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Many animals emit vocal sounds which, independently from the sounds’ func-

tion, contain some individually distinctive signature. Thus the automatic

recognition of individuals by sound is a potentially powerful tool for zoology

and ecology research and practical monitoring. Here, we present a general

automatic identification method that can work across multiple animal species

with various levels of complexity in their communication systems. We further

introduce new analysis techniques based on dataset manipulations that can

evaluate the robustness and generality of a classifier. By using these techniques,

we confirmed the presence of experimental confounds in situations resembling

those from past studies. We introduce data manipulations that can reduce the

impact of these confounds, compatible with any classifier. We suggest that

assessment of confounds should become a standard part of future studies

to ensure they do not report over-optimistic results. We provide annotated

recordings used for analyses along with this study and we call for dataset

sharing to be a common practice to enhance the development of methods

and comparisons of results.
1. Introduction
Animal vocalizations exhibit consistent individually distinctive patterns, often

referred to as acoustic signatures. Individual differences in acoustic signals

have been reported widely across all classes of vertebrates (e.g. fish [1], amphi-

bians [2], birds [3], mammals [4]). Individual differences may arise from various

sources, for example distinctive fundamental frequency and harmonic structure

between acoustic signals can result from individual vocal tract anatomy [4,5];

distinct temporal or frequency modulation patterns of vocal elements may

result from inaccurate matching of innate or learned template or can occur de

novo through improvisation [6]. Such individual signatures provide individual

recognition cues for other conspecific animals, and individual recognition based

on acoustic signals is widespread among animals [7]. Long-lasting individual

recognition spanning over one or more years has also been often demonstrated

[8–10]. External and internal factors such as, for example, sound degradation

during transmission [11,12], variable ambient temperature [13], inner motiv-

ation state [14,15], acquisition of new sounds during life [16], may potentially

increase variation of acoustic signals. Despite these potential complications,

robust individual signatures have been found in many taxa.

Besides being studied for their crucial importance in social interactions

[17–19], individual signatures can become a valuable tool for monitoring ani-

mals. Acoustic monitoring of individuals of various species based on vocal

cues could become a powerful tool in conservation (reviewed in [3,20,21]).
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Figure 1. Most data items used in bird sound recognition are clipped from
longer recordings, whether automatically or manually. We refer to these as
‘foreground’ audio clips, and we also create corresponding ‘background’
audio clips from the other audio segments that are typically discarded.
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Classical capture-mark methods of individual monitoring

involve physically disturbing the animals of interest and

might have a negative impact on the health of studied

animals or their behaviour (e.g. [22–25]). Also, concerns

have been raised about possible biases in demographic and

behavioural studies resulting from trap boldness or shyness

of specific individuals [26]. Individual acoustic monitoring

offers a great advantage of being non-invasive, and thus

can be deployed across species with fewer concerns about

effect on behaviour [3]. It also may reveal complementary

or more detailed information about species behaviour than

classical methods [27–30].

Despite many pilot studies [28,31–33], automatic acoustic

individual identification is still not routinely applied. It is

usually restricted to a particular research team or even to a

single research project, and, eventually, might be abandoned

altogether for a particular species. Part of the problem prob-

ably lies in the fact that methods of acoustic individual

identification were closely tailored to a single species (soft-

ware platform, acoustic features used, etc.). This is good in

order to obtain the best possible results for a particular

species but it also hinders general, widespread application

because methods need to be developed from scratch for

each new species or even project. Little attention has been

paid to developing general methods of automatic acoustic

individual identification (henceforth ‘AAII’) which could be

used across different species.

A few studies in the past have proposed to develop a

general, call-type-independent acoustic identification, work-

ing towards approaches that could be used across different

species, having simple as well as complex vocalizations

[34]. Despite promising results, most of the published

papers included vocalizations recorded within very limited

periods of time (a few hours in a day) [34–37]. Hence,

these studies might have failed to separate effects of target

signal and potentially confounding effects of particular

recording conditions and background sound, which have

been reported as notable problems in case of other machine

learning tasks [38,39]. For territorial animals, the acoustic

confounds will be clear in some cases: if one territory is

close to a river and another is not, then a black-box classifier

might use the sounds of the river itself or of the fauna living

near the river to distinguish the two individuals, rather than

the sounds that the individuals themselves make. Typical

confounds are more insidious, less obvious than this,

although a human observer might not note subtle distinc-

tions between acoustic environments, such as the relative

amount of energy coming from specific sources or their dis-

tance from the receiver, but an automated algorithm may

pick up on them and give them undue weight.

Reducing such confounds directly, by recording an animal

in different backgrounds, may not be achievable in field con-

ditions since animals typically live within limited home

ranges and territories. However, acoustic background can

change during the breeding season due to vegetation changes

or cycles in activity of different bird species. Also, song birds

may change territories in subsequent years or even within a

single season [27]. Some other studies of individual acoustic

identification, on the other hand, provided evidence that

machine learning acoustic identification can be robust in

respect to possible long-term changes in the acoustic back-

ground but did not provide evidence of being generally usable

for multiple species [30,32]. Therefore, the challenge of reliable
generalization of the machine learning approach in acoustic

individual identification across different conditions and differ-

ent species has not yet been satisfactorily demonstrated.

In the work reported in this paper, we tested the generali-

zation of machine learning across species and across

recording conditions in the context of individual acoustic

identification. We used extensive data for three different

bird species, including repeated recordings of the same indi-

viduals within and across two breeding seasons. As well as

directly evaluating across seasons, we also introduced ways

to modify the evaluation data to probe the generalization

properties of the classifier. We then improved on the baseline

approach by developing novel methods which help to

improve generalization performance, again by modifying

the data used. Although tested with selected species and clas-

sifiers, our approach of modifying the data rather than the

classification algorithm was designed to be compatible with

a wide variety of automatic identification workflows.
1.1. Previous methods for AAII
We briefly review studies representing methods for automatic

classification of individuals. Note that in the present work, as

in many of the cited works, we set aside questions of automat-

ing the prior steps of recording focal birds and isolating the

recording segments in which they are active. It is common, in

preparing data sets, for recordists to collate recordings and

manually trim them to the regions containing the ‘foreground’

individual of interest (often with some background noise),

discarding the regions containing only background sound

(figure 1). In the present work, we will make use of both the

foreground and background clips, and our method will be

applicable whether such segmentation is done manually

or automatically.

Matching a signal against a library of templates is a

well-known bioacoustic technique, most commonly using

spectrogram (sonogram) representations of the sound, via spec-

trogram cross-correlation [40]. For identifying individuals,

template matching will work in principle when the individuals’

vocalizations are strongly stereotyped with stable individual

differences—and, in practice, this can give good recognition

results for some species [41]. However, template matching is

only applicable to a minority of species. It is strongly call-type

dependent and requires a library covering all of the vocalization

units that are to be identified. It is unlikely to be useful for

species which have a large vocabulary, high variability, or

whose vocabulary changes substantially across seasons.

Classical approaches that are more flexible include

Gaussian mixture models (GMMs) and hidden Markov

models (HMMs), previously used extensively in human
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speech technology [30,42]. These do not rely on a strongly fixed

template but rather build a statistical model summarizing the

spectral data that are likely to be produced from each individ-

ual. GMM-based methods have been used in songbirds,

although without testing across multiple seasons [42], and

for orangutan including across-season evaluation [30]. Adi

et al. used HMMs for recognizing individual songbirds, in

this case ortolan buntings, with a pragmatic approach to the

call-type dependence intrinsic to HMM sequence models [32].

Other computational approaches have been studied. Cheng

et al. compared four classifier methods, aiming to develop call-

type-independent recognition across three passerine species

[37]. They found HMM and support vector machines to be

favourable among the methods they tested. However, the data

used in this study were relatively limited: it was based on single

recording sessions per individual, and thus could not test

across-year performance; and the authors deliberately curated

the data to select clean recordings with minimal noise, acknowl-

edging that this would not be representative of realistic

recordings. Fox et al. also focused on the challenge of call-

independent identification, across three other passerine species

[34,35]. They used a neural network classifier, and achieved

good performance for their species. However, again the data for

this study were based on a single session per individual, which

makes it unclear how far the findings generalize across days

and years, and also does not fully test whether the results may

be affected by confounding factors such as recording conditions.
1.2. Automatic classification and data augmentation
More generally, computational methods for various automatic

recognition tasks have recently been dominated and dramati-

cally improved by new trends in machine learning, including

deep learning. In bioacoustic tasks, machine learning has

enabled extremely strong performance in automatic detection

of animal sounds [43], automatic species classification from

sound [44,45] and other tasks [46].

These gains come partly from the machine learning

methods but also notably from the use of very large anno-

tated datasets for training. Applying the same methods to

small datasets, like those typically available from specific

wild individuals, is known to be an open research challenge

[47]. In fact the challenge of reliable generalization even with

large datasets is far from solved, and is an active research

topic within the broad field of machine learning. Within bioa-

coustics, this has recently been studied for detection of bird

sounds [43]. In deep learning, it was discovered that even

the best-performing deep neural networks might be surpris-

ingly non-robust, and could be forced to change their

decisions by the addition of tiny imperceptible amounts of

background noise to an image [38].

Note that deep learning systems also typically require very

large amounts of data to train, meaning they may currently be

infeasible for tasks such as acoustic individual ID in which the

number of recordings per individual is necessarily limited. For

deep learning, ‘data augmentation’ has been used to expand

dataset sizes. Data augmentation refers to the practice of syn-

thetically creating additional data items by modifying or

recombining existing items. In the audio domain, this could

be done, for example, by adding noise, filtering or mixing

audio clips together [48,49]. Data augmentation has become

common for enlarging datasets to train deep learning, and

some of the highest-performing automatic species recognition
systems rely in part on such data augmentations to attain

their strongest results [49]. The basic principle is to encourage

a classifier to learn the correct associations, by making use of

expert knowledge, for example that adding a small amount

of background noise in most cases does not alter the correct lab-

elling of a data item. This therefore should typically encourage

a classifier to specialize in the phenomena of interest rather

than irrelevances. However, simple unprincipled data aug-

mentation does not reduce issues such as undersampling

(e.g. some vocalizations unrepresented in data set) or con-

founding factors, since the expanded data sets typically

contain the same limitations but repeated.

There thus remains a gap in applying machine learning

for automatic individual identification as a general-purpose

tool that can be shown to be reliable for multiple species

and can generalize correctly across recording conditions. In

the present work, we will address specific confound difficul-

ties that are present in AAII, by developing structured data

augmentation schemes which can expose and then reduce

generalization problems.
2. Material and methods
2.1. Data collection
For this study, we chose three bird species of varying vocal com-

plexity (figure 2), in order to explore how a single method might

apply to the same task at differing levels of difficulty and

variation. Little owl (Athene noctua) represents a species with

simple vocalization (figure 2a): the territorial call is a single syl-

lable which is individually unique and it is held to be stable over

time (P Linhart and M Šálek 2018, unpublished data) as was

shown in several other owl species (e.g. [31,50]). Then, we

selected two passerine species, which exhibit vocal learning:

chiffchaff (Phylloscopus collybita) and tree pipit (Anthus trivialis).

Tree pipit songs are also individually unique and stable over

time [27]; but the male on average uses 11 syllable types (6–18)

which are repeated in phrases that can be variably combined to

create a song ([51], figure 2b). Chiffchaff song, when visualized,

may seem simpler than that of the pipit. However, the syllable

repertoire size might actually be higher—9 to 24 types—and, con-

trary to the other species considered, chiffchaff males may change

syllable composition of their songs over time ([52], (figure 2c).

Selected species also differ in their ecology. While little owls are

sedentary and extremely faithful to their territories [53], tree

pipits and chiffchaffs belong to migratory species with high fide-

lity to their localities. Annual returning rates for both are 25% to

30% ([27], P Linhart 2012, unpublished data).

For each of these species, we used targeted recordings of single

vocally active individuals. Distance to the recorded individual

varied across individuals and species according to their tolerance

towards people. We tried to get the best recording and minimize

distance to each singing individual without disturbing its activi-

ties. Recordings were always done under favourable weather

conditions (no rain, no strong wind). All three species were

recorded with the following equipment: Sennheiser ME67 micro-

phone, Marantz PMD660 or 661 solid-state recorder (sampling

frequency 44.1 kHz, 16 bit, PCM). In general, the signal-to-noise

ratio is very good in all of our recordings (not rigorously assessed),

but there are also environmental sounds, sounds from other

animals or conspecifics in the recording background.

Little owl (Linhart & Šálek [54]): Little owls were recorded

in two Central European farmland areas: northern Bohemia,

Czech Republic (508230 N, 138400 E), and eastern Hungary

(478330 N, 208540 E). Recordings were made from sunset until

midnight between March and April of 2013—2014. Territorial
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Figure 2. Example spectrograms representing our three study species: (a) little owl, (b) tree pipit and (c) chiffchaff.

Table 1. Details of the audio recording datasets used.

evaluation
scenario

num.
inds

foreground # audio
files (train : eval)

foreground total
minutes (train : eval)

background # audio
files (train : eval)

Background total
minutes (train : eval)

chiffchaff within-year 13 5107 : 1131 451 : 99 5011 : 1100 453 : 92

chiffchaff only-15 13 195 : 1131 18 : 99 195 : 1100 21 : 92

chiffchaff across-year 10 324 : 201 32 : 20 304 : 197 31 : 24

little owl across-year 16 545 : 407 11 : 8 546 : 409 34 : 27

pipit within-year 10 409 : 303 27 : 21 398 : 293 49 : 47

pipit across-year 10 409 : 313 27 : 19 398 : 306 49 : 37
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calls of each male were recorded for up to 3 min after a short

playback provocation (1 min) inside their territories from up to

50 m distance from the individuals. The identities of the males

could not be explicitly checked because only a small proportion

of males were ringed. Therefore, we inferred identity by the ter-

ritory location combined with the call frequency modulation

pattern which is distinctive per individual.

Chiffchaff (Průchová et al. [42,52]): Chiffchaff males were

recorded in a former military training area on the outer bound-

ary of České Budějovice town, the Czech Republic (48859.50 N,

14826.50 E). Males were recorded for the purposes of various

studies from 2008 up to and including 2011. Recordings were

done from 05.30 to 11.00 h in the morning. Only spontaneously

singing males were recorded from within about 5–15 m distance.

The identities of the males were confirmed by colour rings.

Tree Pipit (Petrusková et al. [27]): Tree pipit males were

recorded at the locality Brdská vrchovina, the Czech Republic

(498840 N, 148100 E) where the population has been continuously

studied since 2011. Spontaneously singing males were recorded

throughout whole day according to the natural singing activity of

Tree pipits from mid-April to mid-July. Males were identified

either based on colour ring observations or their song structure [27].

All audio files were divided into separate sound files during

which the focal individual was vocally active (foreground) and

inactive (background). These sound files formed basic units

for the whole recognition process. In the case of pipits and

chiffchaffs, one bout of territorial song was treated as the basic

recognition unit, whereas for little owl a unit was a single terri-

torial call, since these can occur in isolation (figure 2). The total

numbers of individuals and sound files in each dataset are

summarized in table 1.

2.2. Structured data augmentation
‘Data augmentation’ in machine learning refers to creating artifi-

cially large or diverse datasets by synthetically manipulating

items in datasets to create new items—for example, by adding
noise or performing mild distortions. These artificially enriched

datasets, used for training, often lead to improved automatic classi-

fication results, helping to mitigate the effects of limited data

availability [55,56]. Data augmentation is increasingly used in

machine learning applied to audio. Audio-specific manipulations

used might include filtering or pitch-shifting, or the mixing together

of audio files (i.e. summing their signals together) [48,49,57]. This

last option is somewhat related to an idea called ‘mixup’ data aug-

mentation, which is based on linearly interpolating between pairs of

data items [58].

In this work, we describe two augmentation methods used

specifically to evaluate and to reduce the confounding effect of

background sound. These structured data augmentations are

based on audio mixing but with an explicit strategy for the

choices of files to mix, selected based on foreground and back-

ground identity metadata. We make use of the fact that when

recording audio from focal individuals in the wild, it is

common to obtain recording clips in which the focal individual

is vocalizing (figure 3a), as well as ‘background’ recordings in

which the vocal individual is silent (figure 3b). The latter are

commonly discarded. We used them as follows:
Adversarial data augmentation: To evaluate the extent to which
confounding from background information is an issue, we created
datasets in which each foreground recording has been mixed with
one background recording from some other individual (figure 3c).
In the best case, this should make no difference, since the resulting
sound clip is acoustically equivalent to a recording of the fore-
ground individual, but with a little extra irrelevant background
noise. In fact, it could be considered a synthetic test of the case in
which an individual is recorded having travelled out of their
home range. In the worst case, a classifier that has learnt undesir-
able correlations between foreground and background will be
misled by the modification, either increasing the probability of
classifying as the individual whose territory provided the extra
background, or simply confusing the classifier and reducing its
general ability to classify well. In our implementation, each fore-
ground item was used once, each mixed with a different
background item. Thus the evaluation set remains the same size
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as the unmodified set. We evaluated the robustness of a classifier
by looking at any changes in the overall correctness of classifi-
cation, or in more detail via the extent to which the classifier
outputs are modified by the adversarial augmentation.
Stratified data augmentation: We can use a similar principle
during the training process to create an enlarged and improved
training data set. We created training datasets in which each train-
ing item had been mixed with an example of background sound
from each other individual (figure 3d). If there are K individuals
this means that each item is converted into K synthetic items,
and the dataset size increases by a factor of K. Stratifying the
mixing in this way, rather than selecting background samples
purely at random, is intended to expose a classifier to training
data with reduced correlation between foreground and back-
ground, and thus reduce the chance that it uses confounding
information in making decisions.
To implement the foreground and background audio file

mixing, we used the sox processing tool v.14.4.1 to perform

simple additive mixing between the foreground and background

recordings.1
2.3. Using background items directly
Alongside our data augmentation, we can also consider simple

interventions in which the background sound recordings are

used alone without modification.
One way of diagnosing confounding-factor issues in AAII is to

apply the classifier to background-only sound recordings. If there are

no confounds in the trained classifier, trained on foreground

sounds, then it should be unable to identify the corresponding indi-

vidual for any given background-only sound (identifying ‘a’ or ‘b’

in figure 3b). Automatic identification (AAII) for background-only

sounds should yield results at around chance level.

A second use of using the background-only recordings is to

create an explicit ‘wastebasket’ class during training. As well as

training the classifier to recognize individual labels A, B, C, . . .,

we created an additional ‘wastebasket’ class which should be

recognized as ‘none of the above’, or in this case, explicitly as

‘background’. The explicit-background class may or may not be

used in the eventual deployment of the system. Either way, its

inclusion in the training process could help to ensure that

the classifier learns not to make mistaken associations with the

other classes.

This latter approach is related to the universal background

model (UBM) used in open-set recognition methods [42]. Note

that the ‘background’ class is likely to be different in kind from

the other classes, having very diverse sounds. In methods with

an explicit UBM, the background class can be handled differently

than the others [42]. Here, we chose to use methods that can

work with any classifier, and so the background class was

simply treated analogously to the classes of interest.
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2.4. Automatic classification
In this work, we started with a standard automatic classification

processing workflow (figure 4a), and then experimented with

inserting our proposed improvements. We modified the feature

processing stage, but our main innovations in fact came during

the dataset preparation stage, using the foreground and/or back-

ground datasets in various combinations to create different

varieties of training and testing data (figure 4b).

As in many other works, the audio files—which in this case

may be the originals or their augmented versions—were not ana-

lysed in their raw waveform format, but were converted to a mel

spectrogram representation: ‘mel’ referring to a perceptually motiv-

ated compression of the frequency axis of a standard spectrogram.

We used audio files (44.1 kHz mono) converted into spectrograms

using frames of length 1024 (23 ms), with Hamming windows, 50%

frame overlap, and 40 mel bands. We applied median-filtering

noise reduction to the spectrogram data, which helps to remove

unchanging or slowly changing background noise—i.e. broadly

similar effects as inverse Fourier transform denoising.

Following the findings of [59], we also applied unsupervised
feature learning to the mel spectrogram data as a preprocessing step.

This procedure scans through the training data in unsupervised
fashion (i.e. neglecting the data labels), finding a linear projection

that provides an informative transformation of the data. The fea-

tures used are then not the mel spectral energies, but their

transformed versions.2 We evaluated the audio feature data with

and without this feature learning step, to evaluate whether the

data representation had an impact on the robustness and general-

izability of automatic classification. In other words, as input to the

classifier we used either the mel spectrograms, or the learned rep-

resentation obtained by transforming the mel spectrogram data. In

all cases, the features, which vary over time, are summarized by

their mean and standard deviation over time so they can be pro-

cessed as fixed-length feature vectors.

The automatic classifier we used was one based on a random

forest classifier that was previously tested successfully for bird

species classification, but had not been tested for AAII [59].3 The

classifier is a multi-class classifier and outputs scores indicating,

for a given audio clip, which of the known individuals is singing.
2.5. Evaluation
As is standard in automatic classification evaluation, we divided

our datasets into portions used for training the system, and
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portions used for evaluating system performance. Items used in

training were not used in evaluation, and the allocation of items

to the training or evaluation sets was done to create a partition-

ing through time: evaluation data came from different

days within the breeding season, or subsequent years, than the

training data. This corresponds to a plausible use-case in

which a system is trained with existing recordings and then

deployed; the partitioning also helps to reduce the probability

of over-estimating performance.

To quantify performance we used receiver operating curve

(ROC) analysis, and as a summary statistic the area under the ROC

curve (AUC). The AUC summarizes classifier performance and

has various desirable properties for evaluating classification [60].

We evaluated the classifiers following the standard paradigm

used in machine learning. Note that during evaluation, we

optionally modified the evaluation data sets in two possible

ways, as already described: adversarial data augmentation, and

background-only classification. In all cases, we used AUC as

the primary evaluation measure. However, we also wished to

probe the effect of adversarial data augmentation in finer

detail: even when the overall decisions made by a classifier are

not changed by modifying the input data, there may be small

changes in the full set of prediction scores it outputs. A classifier

that is robust to adversarial augmentation should be one for

which the scores it outputs change little if at all. Hence for the

adversarial augmentation test, we also took the scores output

from the classifier and compared them against their equivalent

scores from the same classifier in the non-adversarial case. We

measured the difference between these sets of scores simply by

their root-mean-square error (RMS error).
2.6. Phase one: testing with chiffchaff
For our first phase of testing, we wished to compare the effective-

ness of the different proposed interventions, and their relative

effectiveness on data tested within-year or across-year. We

chose to use the chiffchaff datasets for these tests, since the chiff-

chaff song has an appropriate level of complexity to elucidate the

differences between classifier performance, in particular, the

possible change of syllable composition across years. The chiff-

chaff dataset is also by far the largest.

We wanted to explore the difference in estimated perform-

ance when evaluating a system with recordings from the same

year, separated by days from the training data, versus recordings

from a subsequent year. In the latter case, the background

sounds may have changed intrinsically, or the individual may

have moved to a different territory; and of course, the individ-

ual’s own vocalization patterns may change across years. This

latter effect may be an issue for AAII with a species such as

the chiffchaff, and also impose limits to the application of pre-

vious approaches such as template-based matching. Hence, we

wanted to test whether this more flexible machine learning

approach could detect individual signature in the chiffchaff

even when applied to data from a different field season. We

thus evaluated performance on ‘within-year’ data—recordings

from the same season—and ‘across-year’ data—recordings

from the subsequent year, or a later year.

Since the size of data available is often a practical constraint in

AAII, and since dataset size can have a strong influence on classi-

fier performance, we further performed a version of the ‘within-

year’ test in which the training data had been restricted to only

15 items per individual. The evaluation data was not restricted.

To evaluate formally the effect of the different interventions, we

applied generalized linear mixed models (GLMM) to our evalu-

ation statistics, using the glmmadmb package within R v.3.4.4

[61,62]. Since AUC is a continuous value constrained to the range

[0, 1], we used a beta link function. Since RMSE is a non-negative

error measure, we used a gamma family with a logarithmic link
function. For each of these two evaluation measures, we applied

a GLMM, using the data from all three evaluation scenarios

(within-year, cross-year, only-15). The evaluation scenario was

included as a random effect. Since the same evaluation-set items

were reused in differing conditions, this was a repeated-measures

model with respect to the individual song recordings.

We tested the GLMM residuals for the two evaluation measures

(AUC, RMSE) and found no evidence for overdispersion. We also

tested all possible reduced models with factors removed, compar-

ing among models using AIC. In both cases, the full model as

well as a model with ‘exbg’ (explicit-background training) removed

gave the best fit, with the full model less than 2 units above the

exbg-reduced model and leading to no difference in significance

estimates. We therefore report results from the full models.

2.7. Phase two: testing multiple species
In the second phase of our investigations, we evaluated the

selected approach across the three species separately: chiffchaff,

pipit and little owl. For each of these, we compared the most

basic version of the classifier (using mel features, no augmenta-

tion and no explicit-background) against the improved version

that was selected from phase one of the investigation. For each

species separately, and using within-year and across-year data

according to availability, we evaluated the basic and the

improved AAII system for the overall performance (AUC

measured on foreground sounds). We also evaluated their per-

formance on background-only sounds, and on the adversarial

data augmentation test, both of which checked the relationship

between improved classification performance and improvements

or degradations in the handling of confounding factors.

For both of these tests (background-only testing and adver-

sarial augmentation), we applied GLMM tests similar to those

already stated. In these cases, we entered separate factors for

the testing condition and for whether the improved AAII

system was in use, as well as an interaction term between the

two factors. This therefore tested for an effect of whether our

improved AAII system indeed mitigated the problems that the

tests were designed to expose.
3. Results
3.1. Phase one: chiffchaff
AAII performance over the 13 chiffchaff individuals was

strong, above 85% AUC in all variants of the within-year scen-

ario (figure 5). For interpretation, note that this corresponds to

over 85% probability that a random true-positive item is

ranked higher than a random true-negative item by the

system [60]. This reduced to around 70–80% when the training

set was limited to 15 items per individual, and reduced even

further to around 60% in the across-year evaluation scenario.

Recognizing chiffchaff individuals across years remains

a challenging task even under the studied interventions.

The focus of our study is on discriminating between

recorded individuals, not on the prior step of detecting the

presence of bird sounds. However, our ‘explicit-background’

configuration gave some insight into the potential for auto-

mation of this prior step. Across all three of the conditions

mentioned above, foreground-versus-background discrimi-

nation (aka ‘detection’ of any individual) for chiffchaff was

strong at over 95% AUC. Mel spectral features performed

slightly better for this (range 96.6–98.6%) than learnt features

(range 95.3–96.7%). Having considered this, in the remainder

of the results, we focus on our main question of discriminating

between individuals.
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Figure 5. Performance of classifier (AUC) across the three chiffchaff evaluation scenarios, and with various combinations of configuration: with/without augmenta-
tion (aug), learnt features, and explicit-background (exbg) training. (Online version in colour.)

Table 2. Results of GLMM test for AUC, across the three chiffchaff
evaluation scenarios.

factor estimate p-value

(intercept) 0.8199 0.041*

feature learning 0.3093 0.014*

augmentation 0.2509 0.048*

explicit-bg class 0.0626 0.621

*p , 0.05.

Table 3. Results of GLMM fit for RMSE in the adversarial data
augmentation test, across the three chiffchaff evaluation scenarios.

factor estimate p-value

(intercept) 1.8543 1.9 � 10205***

feature-learning 20.5044 1.9 � 10208***

augmentation 20.8734 ,2 � 10216***

explicit-bg class 20.0141 0.87

***p , 0.001.
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Feature learning and structured data augmentation were

both found to significantly improve classification perform-

ance (table 2) as well as robustness to adversarial data

augmentation (table 3). Explicit-background training was

found to lead to mild improvement but this was a long

way below significance.

There were two possible interpretations for the benefit

conferred by data augmentation: it could be due to our stra-

tified data augmentation having the intended effect of

reducing the foreground–background correlations in the

data, or more simply due to the mere fact of training with a

larger volume of data items. We expected both aspects to

be implicated. To examine this post hoc, we created a

smaller-yet-augmented training set for the chiffchaff within-

year scenario: we took 50% of the items from the primary

dataset, plus an equal number of items sampled (without

replacement) from the augmented dataset, selected in such

a way that this hybrid training set contained the same

number of items per each individual as in the primary
training set. When the AAII system was trained with this

data, the AUC results for the learnt features gave the same

strong performance as with full augmentation (92.6%). For

the mel features, the AUC score of 89.9% indicated mild

impairment relative to full augmentation, but stronger

performance than the base unaugmented scenario.
3.2. Phase two: multiple species
Based on the results of our first study, we took forward an

improved version of the classifier (using stratified data aug-

mentation, and learnt features, but not explicit-background

training) to test across multiple species.

Applying this classifier to the different species and con-

ditions, we found that it led in most cases to a dramatic

improvement in recognition performance of foreground record-

ings, and little change in the recognition of background

recordings (figure 6 and table 4). This unchanged response

to background recordings serves as evidence that the
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Figure 6. Our selected interventions—data augmentation and feature-
learning—improve classification performance, in some cases dramatically
(left-hand pairs of points), without any concomitant increase in the back-
ground-only classification (right-hand pairs of points) which would be an
indication of counfounding. (Online version in colour).

Table 4. Results of GLMM test for AUC, across all three species, to quantify
the general effect of our improvements on the foreground test and the
background test (cf. figure 6).

estimate p-value

(intercept) 0.792 0.00150**

use of improved AAII system 0.852 0.00032***

background-only testing 20.562 0.00624**

interaction term 20.896 0.00391**

**p , 0.01; ***p , 0.001.

Table 5. Results of GLMM test for AUC, across all three species, to quantify
the general effect of our improvements on the adversarial test (cf. figure 7).

estimate p-value

(intercept) 0.873 0.0121*

use of improved AAII system 0.820 0.0027**

adversarial data augmentation 20.333 0.1713

interaction term 0.225 0.5520

*p , 0.05; **p , 0.01.
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Figure 7. Adversarial augmentation has a varied impact on classifier per-
formance (left-hand pairs of points), in some cases giving a large decline.
Our selected interventions vastly reduce the impact of this adversarial test,
while also generally improving classification performance (right-hand pairs
of points). (Online version in colour)
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improvement is based on the individuals’ signal characteristics

and not confounding factors.

Our adversarial augmentation, intended as a diagnostic

test to adversarially reduce classification performance, did

not have strong overall effects on the headline performance

indicated by the AUC scores (figure 7 and table 4). Half

of the cases examined—the across-year cases—were not

adversely impacted, in fact showing a very small increase in

AUC score. The chiffchaff within-year tests were the only to

show a strong negative impact of adversarial augmentation,

and this negative impact was removed by our improved

AAII system.

We also conducted a more fine-grained analysis of the

effect of augmentation, by measuring the amount of deviation

induced in the probabilities output from the classifier. On this
measure, we observed a consistent effect, with our improve-

ments reducing the RMS error by ratios of approximately

2–6, while the overall magnitude of the error differed across

species (figure 8).
4. Discussion
We have demonstrated that a single approach to AAII can

be successfully used across different species with different

complexity of vocalizations. One exception to this is the hard-

est case, chiffchaff tested across years, in which automatic

classification performance remains modest. The chiffchaff

case (complex song, variable song content), in particular,

highlights the need for proper assessment of identification

performance. Without proper assessment, we cannot be

sure if promising results reflect the real potential of proposed
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ing adversarial augmentation and then measuring the differences compared
against the non-adversarial equivalent applied to the exact same data. In all
five scenarios, our selected interventions lead to a large decrease in the RMS
error. (Online version in colour.)
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identification method. We document that our proposed

improvements to the classifier training process are able, in

some cases, to improve the generalization performance dra-

matically and, on the other hand, reveal confounds causing

over-optimistic results.

We evaluated spherical k-means feature learning as pre-

viously used for species classification [59]. We found that for

individual identification it provides an improvement over

plain mel spectral features, not just in accuracy (as previously

reported) but also in resistance to confounding factors. We

believe this is due to the feature learning having been tailored

to reflect fine temporal details of bird sound [59]; if so, this

lesson would carry across to related systems such as convolu-

tional neural networks. Our machine learning approach may

be particularly useful for automatic identification of individ-

uals in species with more complex songs, such as pipits (note

huge increase in performance over mel features in figure 6),

or chiffchaffs (on short-time scale though).

Using silence-regions from focal individuals to create

an ‘explicit-background’ training category provided only a

mild improvement in the behaviour of the classifier, under

various evaluations. Also, we found that the best-performing

configuration used for detecting the presence/absence of a

focal individual was not the same as the best-performing con-

figuration for discriminating between individuals. Hence, it
seems generally preferable not to combine the detection

and AAII tasks into one classifier.

By contrast, using silence-regions to perform dataset aug-

mentation of the foreground sounds was found to give a

strong boost to performance as well as resistance against con-

founding factors. This benefit was not universal—it was not

the case for the difficult case of chiffchaff across-years—but

was, in general, a strong factor in improved performance. Fur-

thermore, the benefit was not eliminated when we reduced

the augmented dataset back to its original size, indicating that

the effect is indeed due to improved invariance to noise/

confound, and not merely to increased sample size. Background

sounds are useful in training a system for AAII, through data

augmentation (rather than explicit-background training).

We found that adversarial augmentation provided a

useful tool to diagnose concerns about the robustness of an

AAII system. In the present work, we found that the classifier

was robust against this augmentation (and thus we can infer

that it was largely not using background confounds to make

its decision), except for the case of chiffchaff with the simple

mel features (figure 7). This latter case exhorts us to be cau-

tious, and suggests that results from previous call-type

independent methods may have been over-optimistic in

assessing performance [34–37,42]. Our adversarial augmen-

tation method can help to test for this even in the absence

of across-year data.

Background-only testing was useful to confirm that when

the performance of a classifier was improved, the confounding

factors were not aggravated in parallel, i.e. that the improve-

ment was due to signal and not confound (figure 6).

However, the performance on background sound recordings

was not reduced to chance, but remained at some level

reflecting the foreground–background correlations in each

case, so results need to interpreted comparatively against

the foreground improvement, rather than in isolation. This

individual specificity of the background may be related to

the time interval between recordings. This is clear from the

across-year outcomes; within-year, we note that there was

one day of temporal separation for chiffchaffs (close to 70

per cent AUC on background-only sound), while an interval

of weeks for pipits (chance-level classification of back-

ground). These effects surely depend on characteristics of

the habitat.

Our improved AAII system performs much more reliably

than the standard one; however, the most crucial factor still

seems to be a targeted species. For the little owl we found

good performance, and least affected by modifications in

methods—consistent with the fact that it is the species with

the simplest vocalizations. Little owl represents a species well

suited for template matching individual identification methods

which have been used in past for many species with similar

simple, fixed vocalizations (discriminant analysis, cross-

correlation). For these cases, it seems that our automatic identi-

fication method does not bring advantage regarding improved

classification performance. However, a general classifier such

as ours, automatically adjusting a set of features for each

species, would allow common users to start individual identi-

fication right away without the need to choose an appropriate

template-matching method (e.g. [54]).

We found that feature learning gave the best improvement

in case of pipits (figure 6). Pipits have more complex song,

where simple template matching cannot be used to identify

individuals. In pipits, each song may have different duration
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and may be composed of different subsets of syllable reper-

toire, and so any single song cannot be used as template for

template matching approach. This singing variation likely

also prevents good identification performance based on mel

features in pipits. Nevertheless, a singing pipit male will

cycle through the whole syllable repertoire within a relatively

low number of songs and individual males can be identified

based on their unique syllable repertoires ([27]). We think

that our improvements to the automatic identification might

allow the system to pick up correct features associated with

stable repertoire of each male. This extends the use of the

same automatic identification method to the large part of song-

bird species that organize songs into several song types and, at

the same time, are so-called closed-ended learners ([63]).

Our automatic identification, however, cannot be con-

sidered fully independent of song content in a sense defined

earlier (e.g. [34,36]). Such content-independent identification

method should be able to classify across-year recordings of

chiffchaffs in which syllable repertoires of males differ almost

completely between the two years [52]. Owing to vulnerability

of mel feature classification to confounds reported here and

because the performance of content independent identification

has been only tested on short-term recordings, we believe that

the concept of fully content-independent individual identifi-

cation has yet to be reliably demonstrated.

Our approach seems certainly to be suitable for species

with individual vocalization stable over time, even if that

vocalization is complex—i.e. for a very wide range of species.

In future work, these approaches should also be tested with

‘open-set’ classifiers allowing for the possibility that new

unknown individuals might appear in data. This is well-

developed in the ‘UBM’ developed in GMM-based speaker rec-

ognition [42], and future work in machine learning is needed to

develop this for the case of more powerful classifiers.

Important for further work in this topic is open sharing of

data in standard formats. Only this way can diverse datasets

from individuals be used to develop/evaluate automatic recog-

nition that works across many taxa and recording conditions.

We conclude by listing the recommendations that emerge

from this work for users of automatic classifiers, in particular

for acoustic recognition of individuals:
(1) Record ‘background’ segments, for each individual

(class), and publish background-only audio samples

alongside the trimmed individual audio samples. Stan-

dard data repositories can be used for these purposes

(e.g. Dryad, Zenodo).

(2) Improve robustness by:

(a) suitable choice of input features;

(b) structured data augmentation, using background

sound recordings.

(3) Probe your classifier for robustness by:

(a) background-only recognition: higher-than-chance

recognition strongly implies confound;

(b) adversarial distraction with background: a large

change in classifier outputs implies confound;
(c) across-year testing (if such data are available): a stron-

ger test than within-year.

(4) Be aware of how species characteristics will affect recog-

nition. The vocalization characteristics of the species will

influence the ease with which automatic classifiers can

identify individuals. Songbirds whose song changes

within and between seasons will always be harder to ident-

ify reliably—as is also the case in manual identification.

(5) Best practice is to test manual features and learned features

since the generalization and performance characteristics

are rather different. In the present work, we compare

basic features against learned features; for a different

example see [12]. Manual features are usually of lower

accuracy, but with learned features more care must be

taken with respect to confounds and generalization.
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Endnotes
1Command used: sox -m [fgfile] [bgfile] [outfile] trim

0 [fgduration]
2This feature learning increases the feature dimensionality from 40 to
500. High-dimensional data can lead to difficulties in some analysis,
but are not intrinsically a problem for modern classification algor-
ithms. Note that [59] evaluated whether the difference in
dimensionality alone was sufficient to explain the strong perform-
ance of feature learning, by performing an additional experiment
projecting all data to fixed dimension; they found that it explained
only a small component of the effect.
3Implemented using scikit-learn version 0.20.2. Parameter settings for
the random forest used 200 trees and the ‘entropy’ criterion for split-
ting branches, as was chosen in the previous research. In the present
work, we did not perform hyperparameter tuning, since the purpose
was not to optimize one particular classifier but to evaluate interven-
tions that could assist classifiers in general.
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52. Průchová A, Jaška P, Linhart P. 2017 Cues to
individual identity in songs of songbirds: testing
general song characteristics in Chiffchaffs
Phylloscopus collybita. J. Ornithol. 158, 911 – 924.
(doi:10.1007/s10336-017-1455-6)
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54. Linhart P, Šálek M. 2017 The assessment of biases
in the acoustic discrimination of individuals. PLoS
ONE 12, e0177206. (doi:10.1371/journal.pone.
0177206)

55. Krizhevsky A, Sutskever I, Hinton GE. 2012
ImageNet classification with deep convolutional
neural networks. In Advances in neural information
processing systems (NIPS), pp. 1097 – 1105. See
http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-
networks.
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